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Abstract—This paper continues the series of numerical investigations of self-ionizing gas flows in
plasma accelerator channels with an azimuthal magnetic field. The mathematical model is based on
the equations of dynamics of a three-component continuous medium consisting of atoms, ions, and
electrons; the model is supplemented with the equation of ionization and recombination kinetics
within the diffusion approximation with account for photoionization and photorecombination. It also
takes into account heat exchange, which in this case is caused by radiative heat conductance. Upon a
short history of the issue, the proposed model, numerical methods, and results for steady-state and
pulsating flows are described.
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INTRODUCTION

The present paper is a part of a large series of studies on mathematical modeling of complex physical
processes related to plasma technology and constant interest in astrophysics. While studying these phe-
nomena during many years, the authors maintained fruitful contacts with Favorskii and his teachers
Tikhonov, Samarskii, Kurdyumov, and his coauthor Degtyarev and associates Tishkin, Shashkov, and oth-
ers. Below, we briefly mention related issues in our studies and uses of numerical methods proposed by
those researchers.

This paper is devoted to numerical models and computation of the gas ionization process and plasma
acceleration in the electromagnetic field formed in coaxial channels of plasma accelerators. The develop-
ment of such accelerators had been conducted for many years at the initiative and under the guidance of
Morozov. The record parameters of acceleration and generation of high-energy plasma flows were
achieved in the cooperation of several research institutions of Moscow, St. Petersburg, Troitsk, Kharkov,
and Minsk within the development of the quasi-steady high-current plasma accelerator (QHPA) [1-3].
An acceleration of ~400 km/s occurs in the main nozzle channel with a diameter of 50 cm formed by two
coaxial electrodes. The plasma is injected into this channel from several small accelerators (input ioniza-
tion cameras) arranged around it, where the gas is ionized. The ionization process is complex and poorly
understood. In contrast to the flow of completely ionized plasma in a channel, which practically occurs
in a quasi-stationary mode or, under some idealization, also in the stationary mode, both steady-state and
nonstationary pulsating modes are observed in the flows of self-ionizing gas. Although the analysis of
physical conditions under which one or the other mode occurs yielded some preliminary result, this prob-
lem remains unsolved. In addition to theoretical and experimental works, it is studied by numerical sim-
ulation; the present paper uses numerical simulation.

In earlier studies, some mathematical models of the ionization processes were proposed in terms of
mechanics of continua, i.e. in terms of magnetic hydrodynamics (MHD) and its generalizations in the
quasi-one-dimensional (hydraulic) approximation, which consider flows in narrow nozzle channels. For
simplicity and uniformity, these approximations assume that the gas entering the channel is weakly ion-
ized, i.e., it has a small but nonzero electrical conductivity. A simple MHD model assumes a jump-like
dependence of the conductivity o on the temperature 7: for 7'< T%, where T* is a given value assigned to

ionization, the conductivity. . =.c,,is small (which corresponds to gas), and for T< T* ¢ = 6, > G,, and
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the medium must be considered as plasma in this case (see [4, 5]). In computations of nonstationary

MHD flows, steady-state modes are observed if the jump ¢, — &, is bounded above, while pulsating modes
are observed when this condition is violated. Another model deals with three-component continuous
medium consisting of neutral atoms, ions, and electrons whose ratio (i.e., ionization level) obeys the laws
of local thermodynamic equilibrium described by the Saha equation. In the computations performed in
the quasi-one-dimensional case, either steady-state or pulsating flows are also observed, which differ from

each other in the ratio J j /m of the total current squared to the mass flow in the channel—in steady-state
modes this ratio exceeds a certain fixed value determined by computations (see [6—8]). Computations of
two-dimensional flows with a nontrivial dependence on the transverse coordinate are described in [9],
where the abovementioned pattern is also observed.

In the two models mentioned above, the ionization front turned out to be too diffuse. A narrow front,
which better agrees with experimental data, was obtained in the numerical model described in [10] in
which the equations of dynamics of the three-component continuous medium are supplemented with the
kinetic equation of ionization and recombination within a modified diffusion approximation (see [11]).
In this model, the structure of atomic energy levels is taken into account and the nonequilibrium nature
of processes is revealed. A well-defined deviation from ionization-recombination equilibrium on the ion-
ization front was observed in the computations, which significantly changed our understanding of the pro-
cess under study. For steady-state flows, the basics of the theory of processes on the ionization front were
developed (see [12]).

Both in experimental and numerical studies, one can notice pulsating flow modes characterized by
large temperature variations. Heated conductive plasma layers periodically appear on the ionization front
and move along the channel while cooling down and spreading. These flow modes seem to have the same
mathematical (in terms of the models under consideration) and physical nature as the high-temperature
layers that periodically occur in plasma cylinder expansion models (see [13]) and in models of plasma
acceleration in a pulsed railgun accelerator (see [14]). They were discovered in numerical experiments by
a group of researchers that included Favorskii under the guidance of Tikhonov and Samarskii and referred
to as T-layers. In the opinion of these authors, a significant role in the model of these phenomena is played
by the nonlinear dependence of plasma conductivity on its temperature.

The further investigation of the ionization process requires the radiative heat exchange to be taken into
account (e.g., see [15, 16]). Its influence on the flows was studied using models of different level of com-
plexity in [17], including the mechanism of spectrum line broadening (see [18]). In simple cases, it suffices
to use the radiative heat conductance approximation, which is justified by the fact that the medium is opti-
cally nontransparent for the radiation in the lines that make the major contribution to the total radiation
field. The total heat flux is also due to the electron and atomic heat conductance.

In this paper, we describe numerical investigations of the nonstationary nonequilibrium ionization
process in the quasi-one-dimensional flow model with account for the radiative heat conductance and
ionization and recombination kinetics.

1. STATEMENT OF THE PROBLEM ON SELF-IONIZING GAS FLOW

Schematically, the plasma accelerator channel consists of two coaxial electrodes connected to an elec-
tric circuit. Neutral gas is injected between the electrodes (Fig. 1). If there is voltage between the elec-
trodes, gas breakdown occurs and an ionization front is formed.

The MHD model of the flow of self-ionizing gas is based on the equation of transfer for the three-com-
ponent medium (see [19]) consisting of atoms, ions, and electrons and on the magnetic field diffusion
equation, which is a consequence of Maxwell’s equations and Ohm’s law if the inertia of electrons and the
displacement current are neglected.

The ionization process is studied for hydrogen, which is often used in experiments. The masses of

atoms and ions are identical: m, = m; = m. It is known from experimental data that the temperature at the
ionization front increases up to 1—3 eV. The concentration of the gas entering the channel is supposed to

be sufficiently high—n = 10" —10" ¢cm™>. Such a medium is quasi-neutral, i.e., n; = n,. The velocities of
the medium components can be assumed to be identical: V; =V, =V, = V. In addition, the experimental
data.and estimates suggest.that we.may consider the case of single-temperature mixture: 7, =7, =7, =T .
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1372 BRUSHLINSKII et al.

Fig. 1. Schematic of the plasma accelerator channel.

Simple transformations of the initial transfer equations for the three-component medium and the
equation of the magnetic field diffusion with regard to the above assumptions yield the following modified
system of MHD equations supplemented with the equation of ionization and recombination kinetics:

% + div(neV) = naneBion - nezniarec + naBm — h.nag, (l 1)
%, divpv) =0, pDivp=lixh (1.2)
ot dt c
d o2
p%E 4 pdivv =L — divq — divW, (1.3)
dt o
OH _ Curi(V x H) — ccurl 4., (1.4)
ot c

q=—%«,,,VT, W=—«x,VT, P=P+P+P =01+)(cp—cy)pT, e=10+),T+¢,,

a=—Te  j=LeurH, L£=21(v,v).
dt ot

n, +n; 4n

Here, p = mn,,, is the density of heavy particles, n,,, = n, + n; is the total concentration of heavy parti-
cles, a is the degree of ionization, q is the heat flux, «,_,, is the electron-atomic heat conductiance, W is
the radiation energy flux, k4 is the radiation heat conductance, and P is the total pressure. The Joule
heating Q,; = j2 / o in Eq. (1.3) for the internal energy considerably exceeds the heat generated due to fric-
tion with other components. The internal energy per unit of mass € includes the additional term
€; = gol /m;, which is responsible for the loss of energy for ionization, where / is the atom ionization
energy. The recombination a,., and ionization 3,,, coefficients in Eq. (1.1) and the process related to pho-
toionization and photorecombination are responsible for the generation and loss of free electrons. The
medium electrical conductivity in Egs. (1.3) and (1.4) is ¢ = e2ne /m,v,, where the average frequency of

collisions of an electron with other particles v, is composed of the frequencies of collisions with atoms and
ions:

Ve = Ve + Veis Vea = N4 <Ve>Sea9 Vei = H; <Ve> Sei; (15)

here, S,, and S,; are the effective collision sections (see [20]).

The main heat transfer mechanisms depend on the medium state. In the case of large degrees of ion-
ization, a significant role in the total heat transfer is played by the classical electron heat conductance
across the magnetic field. At low degrees of ionization, atomic heat conductance makes a noticeable con-
tribution. The total thermal conductivity coefficient is determined by a unified formula (see [20]) that
describes.the transitionfrom.the weakly ionized state to greater degrees of ionization.
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The radiative heat conductance (see [15]) is K4 = %CschpT ’, where C,, is the Stefan—Boltzmann

constant. The mean path of photons

_mc Ao
cp ~ 2 ’
ne” Nifi

is determined based on the Doppler broadening of spectrum lines A®w = o,/ /c, where o, = 2nc/A,, and

fu are the spectral frequency and the oscillator strength, for example, for the Lyman o.-line of hydrogen
plasma. Estimations and computations show that the role of heat conductance is by and large insignifi-
cant. The statement of the problem includes boundary conditions on the electrodes, entry, and exit of the
accelerator channel.

nk:nlzl’la

2. KINETICS OF EXCITED STATE POPULATION

Plasma is a multicomponent medium. By interacting between themselves, with the plasma radiation
and fields, the components can change their energy state thus affecting the energy balance of the medium
and participate in the formation of other components through the processes of ionization and recombina-
tion. Therefore, in the description of plasma dynamics, we face the problem of determining the medium
composition.

In the state of thermodynamic equilibrium, the plasma composition is determined by the value of ther-
modynamic parameters. The low-temperature plasma is described by Boltzmann’s statistics. Atoms and
ions can be in the ground or excited states in which the concentrations of particles are related by Boltz-
mann’s equation. In the local thermodynamic equilibrium approximation, the concentrations of plasma
components (electrons, ions, and atoms) are determined by the Saha equation

32
P g - 2§(—2"m;ka j exp| —LL |, @.1)
n, =\ h kT

where FE, is the ground state binding energy, which is equal to the ionization energy; X, and X, are the sta-

tistical sums; and K, is the ionization equilibrium constant. Under the quasi-neutrality condition », = #,,
Eq. (2.1) can be used to find the degree of ionization. In this case, the local thermodynamic equilibrium
approximation assumes the direct ionization from the ground state and the inverse recombination process.

As a matter of fact, a bound electron in an atom can transit from level to level on a complex path before
it reaches the continuum or conversely the ground state. In the general case, the system of equations of
level-by-level kinetics must be solved that determine the concentration of excited particles in the kth state.
The solution of this system is a nontrivial task. For this reason, the quasi-stationary approximation is
sometimes used, under which the population of the kth atom state has time to adjust to such relatively
slowly varying plasma parameters as temperature and concentration.

There are several approaches to the approximate analytical calculation of level population. One such
approach uses the smearing of the discrete energy spectrum. In the corresponding diffusion approxima-
tion, the balance system of equations is reduced to an equation for populations n(E) considered as a con-
tinuous function of time. This approach is valid for highly excited states separated by small energy inter-
vals. The quasi-continuous transport in the energy space is characterized by the flux j (E ), which depends
on the density of particles, gradient, and the corresponding coefficients in the flux representation by a
series. Based on the transport continuity, the divergence of this flux is equal to the change in the concen-
tration of particles with the energy £ according to the Fokker—Planck equation, which is used for finding
the recombination coefficient and determining the nonequilibrium distribution of populations.

In the single-quantum approximation, the electron motion is considered in the atom energy space
assuming that the energy levels are discrete. The probability of collisional transitions depends on the

energy level difference as W, ~ (E, — Em)_4. For this reason, transitions between adjacent levels are most
probable. In the single-quantum approximation, we have for the electron flux in the energy space between
the levels k and k — 1 as a result of collision processes

J =W =Wk (2.2)
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A drawback of the single-quantum approximation is that only transitions between the adjacent levels are
taken into account. This drawback is overcome in the modified diffusion approximation. This approxima-
tion also takes into account the discreteness of the atom energy levels, and the transport of a bound elec-
tron caused by collision processes is considered as diffusion in the discrete space. The difference Fokker—
Planck equation is derived (see [11]), which, in the limit case of merging levels, turns into the differential
equation. The difference Fokker—Planck equation corresponds to the collision flux, the form of which
coincides with expression (2.2) for the flux in the single-quantum approximation. In the modified diffu-
sion approximation, the probabilities W, ,,, should be replaced with the effective probabilities of single-

quantum transitions Z, ,,, in which the contributions of different collisional transitions are summarized.

Using the quantum-mechanical rule for summing transition probabilities, we can calculate the effec-
tive transition probabilities and average them over the Maxwell distribution of free electrons. As a result,
we obtain the following relation for k£ > 1:

4
L = WA e'n Ey exp (——k — Ek“}; (2.3)
\/mekae (Ek—l - Ek+1)(Ek - Ek+1) kyT,

here, A, is the Coulomb logarithm of the bound electron. For the effective probabilities, the principle of

detailed balance n,?Z kkl = n2+,Z «+14 holds. Following [11], we can finally obtain the stepwise recombina-
tion coefficient

(2rm k,T,)"” e (—E/k,T,)

-1
em — 22!”6 (24)
>l 8Lk
where g, is the statistical weight. The stepwise ionization coefficient B, is related to a.,, as
Bem = KiOems (2.5)

where the ionization equilibrium constant K, is calculated using (2.1).

The quantities B, and a,,, determined by formulas (2.3)—(2.5) make it possible to find the rates of
stepwise ionization and recombination processes. In distinction from the diffusion approximation and a
number of interpolation formulas in [11], the relations discussed above, in which the contributions of dif-
ferent levels within the ionization and recombination Kinetics are summarized, were successfully used to
calculate the flow with the formation of a narrow ionization front corresponding to experimental data.

3. QUASI-ONE-DIMENSIONAL FLOW MODEL

In self-ionizing gas flows, of major interest is the dependence of flow parameters on the longitudinal
coordinate of the accelerator channel. The variation of variables in the transverse or radial direction is
insignificant and can be neglected. Therefore, we may restrict ourselves to the quasi-one-dimensional
approximation (e.g., see [21, 4, 5]) and consider the flow in a narrow cylindrical tube of the channel of
given section. In this case, the functions to be found are averaged over the transverse section of the channel
and satisfy equations that include two independent variables—the time ¢ and the spatial coordinate z

along the channel. We assume that the average characteristic channel radius » = r is constant. The equa-

tions include the area of the channel transverse section f(z) = 2nr,Ar(z), where A r(z) is the gap between
the electrodes.

Figure 1 shows the projection of the coaxial electrodes on the plane (7, z). Let the external electrode be
the cathode, and the internal one be the anode. The corresponding directions of the current, electric field,
and azimuthal magnetic field are shown in this figure. The magnetic field is perpendicular to the direction
of the electric current and the plane of Fig. 1. In the narrowest part of the channel (the interval AB in
Fig. 1), the gas is ionized and forms a narrow front. Behind the front, the plasma accelerates due to the
Ampére force.

In the quasi-one-dimensional approximation, the ionization process is described by the extended sys-
tem.of MHD. equations.(see-[10,-12]), which can be represented in dimensionless form. Introduce the
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notation V' =V, and H = H,,. Taking into account the equation of ionization and recombination kinetics,
we have

an_e‘f + M = ffe’ 1:‘e = naneBion - njni&'rec + ana - ”enidma
ot 0z
of LV _y oo
at 0z
2
ot 0z 0z 2 2

opef , A(pe/)V _ an fv(a_Hj _Ya (3.1)

= I’la +I’l,-,

ot 0z oz’

OHf aHVf (
ot
n

M Bg T n, =n, a:_e, n, _(1 (X)p, q__Ka_T

200-1) 2 P 0z
V= 1/00 = 1/01 + 1/62, Gl = (X.Glo/(l - G)ﬁ, 62 = 620T3/2

Attheentryz=0,p=1,T =1, H =1, and a = a;, are given. At the exit of the accelerator z = 7,
the boundary conditions correspond to free outflow. As the measurement units, we use the dimensional

parameters at the entry », (p, = mny), T,, H,, and the length of the channel or its part L. The characteristic
magnetic field H,, = 2J,/cr, is determined by the discharge current in the system J,. Using these quanti-

ties, the units of pressure H 5 /4n, velocity V, = H,/\4np,, time L/V;, and electric field £, = H V,/c are
formed. The dimensionless parameters in (3.1) are

B=8nP/H,, (P =kmnTy, v=c/4nlV,o, T*=1/k,T. (3.2)

The dimensionless conductivity or the magnetic Reynolds number 6, = Re,, = 1/v include the quantities
G,y and o,,, which are represented in terms of the initial dimensional parameters and physical constants
using (1.5). The dimensionless values of the heat conductivity K, ionization and recombination coeffi-
cients B, & recs Bw, and @&, in (3.1) are determined in terms of the dimensional constants. The internal
energy equation is replaced with the equation for entropy.

The first equation in (3.1) describes the rate of electron production with regard to various processes
described by the right-hand side. Estimates of probabilities of different processes show that the major fac-
tor causing ionization and recombination in the case of sufficiently dense low-temperature plasma is the
interaction of electrons with atoms and ions corresponding to the following elementary direct and inverse

processes: A, +e <> A,, + e (excitation and deexcitation and 4, +e <> A" + e + e (electron collisonal ion-
ization and triple recombination). In addition, there is photoionization and photorecombination

A +ho o> A +e.

For hydrogen atoms within the modified diffusion approximation (see [11]), in which the diffusion of
the bound electron is considered in the atom’s energy space with regard to the fact that its energy levels
are discrete, the stepwise recombination coefficient a..,, is determined, in accordance to (2.3) and (2.4), by

e’ z (2k +1) exp (_Ekﬂ/kb]:z)
2 (mk,T,)" ZE | i (k +1)° Ay

) 3.3)

cm T

k=1

where E, = E,/k> and E, = [ =13.6 eV = 2.16 x 10" erg for hydrogen atoms.

The total ionization and recombination coefficients include the direct ionization process from the
ground state and the inverse recombination process:

Bion - ch + st Qe = Aey + Olgg s where ﬁsl = I/Vl,e/ne s Oy = (We,l + Ael )/ne
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1376 BRUSHLINSKII et al.

Here, the Einstein coefficient A,; determines the probability of spontaneous radiation. The major contri-
bution is made by the stepwise processes in accordance with (3.3) and (2.5).

In addition, we take into account the processes related to photoionization and photorecombination
(e.g., see [15]). When the spectral density of the equilibrium radiation or Planck’s function are used, the
corresponding coefficients in (1.1) and (3.1) are calculated by

where 03, =7.9x107" cm?is the hydrogen effective photoionization section.
The area of the channel cross-section is specified as f(z) =0.3-0.8z(1—z) for z<1 and

f(2)=0.82-0.5 for 1 < z < z,,, = 3. The channel is a nozzle of unit length with a linearly expanding
socket added on the right (Fig. 1).

4. COMPUTATION TECHNIQUES

The numerical simulation of MHD problems, along with common features characteristic of conven-
tional fluid dynamics, has some specific features discussed, e.g., in [22]. In the numerical model presented
in this paper, the hyperbolic part of the MHD equations (e.g., see [23]) is solved using the flux-corrected
scheme (see [24]).

The parabolic part of the MHD equations includes the electrical and heat conductivity coefficients,
which are highly variable at the ionization front along with the thermodynamic parameters of the medium
for the self-ionizing gas flows considered in this paper; the thermodynamic parameters are determined by
the magnetic fluid dynamics of the medium. For example, the account for electrical conduction in the

equation of magnetic field diffusion for the azimuthal component of the magnetic field H = H,, requires,
according to (3.1), a boundary value problem for the equation

o4 _ 2, )

ot 0z 07
to be solved. A reliable method for solving problems with strongly varying coefficients is based on the use
of the flow variant of the sweep method (see [25]). It was shown in that paper that, in problems with
strongly varying coefficients when the conventional sweep method results in the complete loss of accuracy,
the flow variant yields high quality and reliable results.

5. NUMERICAL RESULTS FOR SELF-ORGANIZING GAS FLOWS

In experiments on plasma accelerators and in simple ionization models (see [4, 5, 9]), steady-state and
pulsating modes were observed, depending on the values of the discharge current and mass flux. Periodic
flow modes were also observed in MHD flows with switching off of the electrical conductivity switched off
(see [26]).

In the proposed model, two flow modes are also realized. In particular, as the discharge current is
decreased, pulsating flows are observed instead of the steady-state ionization process. Figure 2 shows the

characteristic distributions of the MHD variables in the pulsating flow at different times #, = 8.8 (solid
lines) and ¢, = 8.85 (dashed lines) corresponding to n, =2.5x 10" cm73, T, =500°K, J, =55kA,

iy, = 107", B=0.16,T7*=313,and V, = 0.7 x 10° cm/s. These values of concentration and temperature
at the entry correspond to the range of parameters used in plasma accelerators. We assume that equilib-
rium weakly ionized gas is fed at the entry of the channel; the degree of ionization a;, of this gas is deter-
mined by the Saha equation (2.1).

The flow of the self-organizing gas is characterized, on the one hand, by sharp increase in temperature,
velocity, and degree of ionization and, on the other hand, by sharp decrease in the density and magnetic
field at the ionization front located in the narrowest part of the channel. In distinction from the earlier
models, we have much sharper dependences of all the variables at the front within the Kinetics and recom-
bination model. This indicates that the description of the ionization process agrees with experiments (e.g.,
see [27—30]), in which a narrow ionization front is observed. In addition, it is clearly seen in Fig. 2f that
the ionization process is nonequilibrium in the neighborhood of the front, which is indicated by a peak of

the function I =T . (z) on the right-hand side of the first equation in (3.1).
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Fig. 2. Distribution of the MHD parameters along the channel in the pulsating flow of the ionizing gas at different times:
(a) temperature, (b) density, (c) velocity of the medium, (d) magnetic field, (e) degree of ionization, and (f) deviation
from equilibrium.

Pulsating flows of the self-ionizing gas are accompanied by oscillations of all the variables. Figure 3
shows the plots of the temperature and degree of ionization as functions of time for the flow pattern shown
in Fig. 2. The values of the quantities are given at the channel exit.

In the process of ionization, the flow velocity in the neighborhood of the front first overcomes the gas

dynamic speed of sound V, = \JYP/p (the dotted line in Fig. 2c¢) and then the magneto-gas dynamic speed

ofsoundV, = \/ng + H? /p (the dot-and-dash line in Fig. 2c). In steady-state flows of the self-ionizing gas,
the transonic transition for V, occurs in the narrowing part of the channel (z < 0.5), while the transition
through V; occurs in the most narrow part of the channel z = 0.5. In nonstationary flows, the transition
through 1, and V', occurs in the divergent part of the channel at z > 0.5. This, in particular, explains the
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Fig. 3. Time dependences of the parameters in the pulsating flow of ionizing gas: (a) temperature and (b) the degree of
ionization.
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Fig. 4. Boundary between the steady-state and pulsating flows of the ionizing gas.

occurrence of pulsating modes but does not completely explain nonstationary flows, which can also occur
due to processes in electric circuits and other factors.

From numerical results, we determined the boundary of transition from pulsating modes to steady-
state flows of the self-ionizing gas. This boundary is shown by a dashed line in Fig. 4 in the plane of vari-
ables (InJ,,InJ ), where J,;, = er/m; (kA) is the mass flux expressed in the units of current. Above the

dashed line, at large values of the discharge current, we have steady-state flows. Below this line, at lower
values of the discharge current, nonstationary pulsating modes are observed. Different markers at the

boundary correspond to quasi-stationary flows calculated for two values of the temperature 7;, = 500°K
and T, = 750°K, for different gas concentrations #, at the entry, and the corresponding values of the dis-
charge current J, corresponding to the boundary of transition from the pulsating to steady-state flows.
The marker indexes from 1 through 7 along the boundary correspond to different patterns of quasi-sta-
tionary flows calculated for 7, = 500°K and the values of J, and n, shown in the table, where the flow rate i
(g/s) and parameter 3 are also presented.

The dashed line in Fig. 4 is described by the equationInJ, = A1InJ,, + b, where & ~ 0.5. The condition
of steady-state flows of the self-ionizing gas can be formalized in the form of the inequality

I/ > K, 4.1)

where the constant K generally.depends on the accelerator channel shape.
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Parameters corresponding to quasi-stationary flows on the boundary between the steady-state and pulsating modes

No. 1 2 3 4 5 6 7
ny x 1017, cm=3 1.0 1.5 2.0 2.5 3.0 3.5 4.0
J, kA 49 63 70 82 85 97 106
i x 10, g/s 3.9 6.4 7.8 10 11 14 18
B x 102 8.0 7.3 7.9 7.2 8.0 7.2 6.9

One may assume that inequality (4.1) is universal and is a consequence, for example, of similarity laws.
It is known that the physical pattern of processes is determined by dimensionless parameters rather than

by the absolute values, such as J ,, ny, Tj), and L; i.e., it agrees with similarity criteria. The same dimen-
sionless parameters can correspond to various sets of initial dimensional parameters. For the class of flows
considered in this paper, we have two basic dimensionless parameters—v and [3 defined by (3.2). As fol-
lows from the table, for the set of flows with the same 7}, on the stationarity boundary, it turns out that the
dimensionless parameter is almost constant, so that we may assume that 3 ~ const. Similar conclusions
are valid for the magnetic viscosity v or the magnetic Reynolds number Re ,,. The distributions of Re , val-
ues along the channel are almost identical in the calculations on the stationarity boundary.

Thus, the flows on the interface between the pulsating and steady-state modes are similar with respect
to two dimensionless parameters [ and v. Taking into account their definition (3.2), we conclude that
V, = H,/yJ4mp, = const on the interface, at least, for the flows with the same temperature 7, at the entry.
Using the system of equations for steady-state plasma flows in the narrow channel approximation in the
absence of dissipation, one can show (see [27]) that the maximum plasma outflow speed at the exit of the
accelerator channel is V,,, = x/iVO. Taking into account the fact that the MHD variables are constant
before the ionization front (see Fig. 2), this estimate can be used for the flows of the self-ionizing gas con-
sidered in this paper. Simultaneously, we use one more estimate also presented in [27] for the maximum
plasma outflow V,, ~ J j /rin terms of the discharge current J, and the mass flux 7 . As a result, we have

J[f/m ~Vaax ~ Vo = const on the boundary between the pulsating and steady-state modes, which agrees
with the empirical description.

CONCLUSIONS

Nonstationary pulsating flows of the self-ionizing gas in the channel of a plasma accelerator with an
azimuthal magnetic field based on the MHD equations complemented with the equation of kinetics and
recombination within the modified diffusion approximation is investigated. The numerical results suggest
an empirical condition for the flows of self-ionizing gas to be steady-state; this condition also follows from
similarity laws.
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